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Phase diagram of the Z(4) ferromagnet in an anisotropic 
square lattice 

Constantino Tsallist and Jean Souletie 
Centre de Recherches sur les Trbs Basses Tempkratures, CNRS, BP 166 X,  38042 Grenoble 
Cedex, France 

Received 17 June 1985 

Abstract. Within a real space renormalisation group (RG) scheme, we study the criticality 
of the ferromagnetic Z(4)  model on an anisotropic square lattice. We use an RG cluster 
which has already proved to be very efficient for the Potts model on the same lattice. The 
establishment of the RG recurrence relations is greatly simplified through the break-collapse 
method. The phase diagram (exhibiting ferromagnetic, paramagnetic and nematic-like 
phases) recovers all the available exact results, and is believed to be of high precision 
everywhere. If the model is alternatively thought of as being associated with a particular 
hierarchical lattice rather than with the square lattice, then it is exact everywhere. 

1. Introduction 

The Z ( N )  model unifies in a single framework a large amount of theoretically and 
experimentally important statistical models (e.g. bond percolation, random resistor 
networks, spin-4 Ising, N-state Potts, clock and classical X Y  models) which are 
recovered as particular cases. It has attracted, during recent years, a certain amount 
of effort (Wu and Wang 1976, Elitzur et a1 1979, Savit 1980, Cardy 1980, Alcaraz and 
Koberle 1980, 1981, Rujan et a1 1981, Alcaraz and Tsallis 1982, Baltar et al 1984, 
Mariz et a1 1985), mainly addressing the square lattice, whose study is simplified 
because of self-duality. The Z ( N )  model coincides with the N-state Potts model up 
to N = 3, and starts to be more general (more than one coupling constant) at N = 4, 
which is the case presently addressed (two coupling constants). The phase diagram 
of the Z(4) ferromagnet in the square lattice is known to present three phases, namely 
the paramagnetic (P; Z(4)  symmetry), the nematic-like or intermediate (I; Z(2)  sym- 
metry) and the ferromagnetic (F; completely broken symmetry) phases. The full phase 
diagram is constituted by second- or higher-order phase transitions. For the isotropic 
square lattice, the P-F critical line is completely determined by self-duality arguments; 
furthermore, duality strictly relates the analytically still unknown I-F and I-P lines 
(although a numerically quite precise determination has been recently undertaken by 
Mariz et a1 (1985)). The P-F, I-F and I-P lines join at a multicritical point, which is 
precisely the four-state Potts ferromagnet critical point. 

+Permanent address: Centro Brasileiro de Pesquisas Fisicas/CNPq, Rua Xavier Sigaud 150, 22290 Rio de 
Janeiro, Brazil. 
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For the anisotropic square lattice (not necessarily equivalent X and Y crystalline 
axes, each one of which carries two coupling constants) the situation is as follows. 
The P-F critical frontier (critical volume in a four-dimensional parameter space) is 
invariant under duality but its points are not in general self-dual, and therefore duality 
arguments are not sufficient for establishing its analytical expression. The I-F and I-P 
critical volumes still transform, through duality, one into the other. The P-F, I-F and 
I-P critical volumes join at a multicritical surface, one line of which corresponds to 
the anisotropic square lattice four-state Potts ferromagnetic critical line. 

The criticality of the Z(4) ferromagnet on the isotropic square lattice has been 
recently studied (Mariz et a1 1985) within a real space renormalisation group (RG) 

formalism based on the well known self-dual Wheatstone bridge cluster; that treatment 
recovers all the available exact results for the corresponding phase diagram, and is on 
the whole quite satisfactory. Along similar lines, we discuss, in the present paper, the 
criticality corresponding to the anisotropic square lattice; to do so we use a different 
self-dual cluster, particularly well adapted to this more general situation, and which 
has already proved its efficiency for the Potts model (de Oliveira and Tsallis 1982). 

In § 2, we introduce the model and the RG formalism, in 0 3 we present the main 
results and we finally conclude in 0 4. 

2. Model and RG formalism 

A convenient form for the Z(4) (symmetric Ashkin-Teller model) ferromagnet 
(dimensionless) Hamiltonian is the following (Alcaraz and Tsallis 1982): 

where T is the temperature, ( i , j ) x  and (i, j ) ,  run over all the pairs of first-neighbouring 
(respectively along the x and y axes) sites on a square lattice, cr, = +1, T, = + l ( V i ) ,  
K ;  3 0, K :  3 0, K ;  + 2K; 3 0 and K :  + 2K; 3 0 (the dimensionless coupling constants 
K are related to the corresponding dimensional ones through K = J l k g T ) .  Let us 
also introduce the operationally convenient variables (vector transmissivity, Alcaraz 
and Tsallis 1982), t X  = (1, t ; ,  t ; ,  t;) and tY = (1, t;, t g ,  2;) through 

1 - exp( -4K T) 
1 +2  exp[-Z(K:+2K:)]+exp(-4K:) t : =  ( r = x , . Y )  (2a)  

and 

1 - 2 exp[ -2( K + 2Kr)]+  exp( -4K T) 
1 + 2  exp[-2(K:+2K:)]+exp(-4K:) ( Y  = x, Y ) .  t ;  G 

This vector transmissivity generalises the scalar one used by Tsallis and Levy (1981) 
for the Potts model. The Hamiltonian (1) contains several interesting particular cases, 
namely the four-state Potts model ( K :  = 2K$, hence t :  = 2 : )  as well as three versions 
of the spin-; Ising model (Ising (1): K :  = 0, hence t: = ( t : ) ’ ;  Ising (2): K :  = 0, hence 
t :  = 0; Ising (3): K :  = CO, hence t: = 1). 
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Let us now establish relationships we shall be needing later on. Consider a series 
(parallel) array of two bonds with transmissivities t ( ’ )  and t ( 2 ) ;  the equivalent trans- 
missivity r(s)(t(p)) is given by (Alcaraz and Tsallis 1982, Mariz er a1 1985) 

( r = 1 , 2 )  (series) (3 1 t ( S )  = ( 1 )  (2) 
r t r  t r  

and 

(parallel). 

Equations (4) can be conveniently rewritten as follows: 

r ( r = 1 , 2 )  t ( ~ ) D  = t (1)Dt(2)D 
r r  

where ti-.e dual transmissivity tD is defined by 

1 - f 2  

1+2t ,+  t2 

t D =  1 - 2 f l +  f 2  

1 +2tl  + r 2 ’  

t y  E5 

2 -  

We can now go back to the anisotropic square lattice. To construct the RG recurrence 
relations (in the ( r ; ,  t ; ,  r ; ,  tg)  space, for instance), we follow along the lines of the 
Potts model treatment of de Oliveira and Tsallis (1982), and renormalise the cluster 
(two-rooted graph) indicated in figure l (b )  into the single bond indicated in figure 
l (a) .  To be more explicit, we construct the present RG in such a way as to preserve 
the two-body correlation functions (such a procedure is very efficient even for quantum 
systems; see for instance Caride et a1 (1983)), i.e. (along the x axis) 

exp(-xi2) = ,,z,, exp(-x123456) (7) 

where the renormalised (dimensionless) Hamiltonian X ; 2  is given (except for an 

i b l  
1 

( r l  
1 

3 4 

2 

Figure 1. Two-rooted graphs associated with the x axis RG recursive relations (the y axis 
ones are completely analogous), obtained by renormalising cluster ( b )  into cluster ( a )  (the 
full line and broken line represent respectively the x and y bonds of the square lattice; 
the arrows indicate the ‘entrances’ and ‘exits’ of the clusters; 0 and 0 respectively denote 
intemal and terminal sites). Graph ( c )  is equivalent to graph (b)  with dotted line and 
wavy line representing respectively series and parallel arrays of the x and y bonds. 
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additive constant) by 

%?;2= K ; ' - K ; ' ( u , u ~ +  T ~ T ~ ) - ~ K ; ' C T ~ U ~ T ~ T ~  ( 8 )  

and the cluster (dimensionless) Hamiltonian %?I23456 is given by 

%?12345,j = 5 K ;  - K;(  U1 U5 + 7 1  7 5  + U i U 4  + 71 7 4 +  U 3 U 4  + T 3 7 4  + U 2 U 3  -k 7 2 7 3  -k V 2 U . 5  + 727.5) 

-2  K ;( ~ 1 ~ 5 7 1 7 5  + U l U 4 7 1 7 4 +  U 3 ( T 4 7 3 7 4 +  V 2 U 3 T 2 7 3  + (T2(+67276) 

+ 4 K f  - K f (  ( T 1 U 4 +  7 1 7 4 +  U 3 u 5  + 7 3 7 5  + u 4 u 6 +  7 4 7 6 +  U 2 u 3  + 7 2 7 3 )  

-2 K ;( ( T I  U 4 7 1  7 4  + U3u5 7 3  7 5  + (+4(+67476 + u 2 u 3  7 2  7 3 ) .  (9) 

We immediately see that the graph indicated in figure 1 (  b )  is equivalent to that indicated 
in figure l ( c )  where t ( S )  and t(P) are respectively given by equation (3 )  and equations 
(4) with 6 ' )  = t X  and t ( 2 )  = t". The next step is to calculate the transmissivity (identified 
with 2"') of the graph indicated in figure l ( c ) .  We perform this through the break- 
collapse method (BCM),  introduced by Tsallis and Levy (1981) for the Potts model 
and recently extended by Mariz et a1 (1985) to the Z(4) model (see Tsallis (1985) 
for a review). The transmissivity 1;' is given by 

and 

where NI, N2 and D are to be determined. To do this we shall operate on the central 
bond of figure l ( c )  (in fact, we could just as well choose any other bond), and obtain 
the broken ( t ;  = t ;  = 0), the collapsed ( t ;  = ti = 1 )  and the pre-collapsed ( t ;  = 0, t;  = 1 )  
graphs, respectively indicated in figures 2( a)- (  c ) .  Let us note tbb = ( tyb, t;b) = 
( N p /  Dbb, NPb/ Dbb), t C C =  ( t y ,  f?) = (Ny/ D", N y /  Dcc) tbc= ( C y c ,  fp) = 
(N?/ Dbc, N?IDbc), the transmissivities respectively associated with the graphs of 

and 

l a 1  
1 

m 

I 
I 

/ 
/ 

I "31 
;'t //' 

2 

I b l  
1 

( t y ,  t ;  

2 

I C 1  
1 

2 

Figure 2. Two-rooted graphs obtained by breaking ( 1 ;  = f ;  = 0; graph ( a ) ) ,  collapsing 
( 1 ;  = t ;  = 1;  graph ( b ) )  and pre-collapsing ( 1 ;  = 1 - r; = 0; graph ( c ) )  the rx bond of the 
graph of figure l (c ) .  Sawtooth line represents a pre-collapsed bond. 
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figure 2. The quantities N1, N 2  and D we are looking for are given (BCM; Mariz el al 
1985) by 

N,  = ( 1  - t;) NPb+ t;N;'+ ( r ;  - t;)NPC 

D = (1 - t;)Dbb+ t ;Dc'+( t ; -  t ; ) P  

( r = 1 , 2 )  ( 1 1 )  

and 

(12) 

and consequently the knowledge of NPb, Dbb, N:, D", N Y  and DbC enables the 
calculation of N, and D. 

The transmissivities tbb and tCC are easily calculated (by using the series and parallel 
algorithms expressed in equations (3) and (4)) as the respective graphs (figures 2 ( a )  
and 2( b ) )  are reducible in series and parallel operations. The transmissivity tbc is more 
complex, and has to be further reduced through the BCM (recursive use of the algorithm 
expressed in equations ( 1 1 )  and (12)). All graphs reducible in series and parallel 
operations are straightforwardly calculated. Only one graph resists until the very last 
step, and this graph exclusively contains (0, 1)  bonds: the transmissivity of such a 
graph itself satisfies c l  = 0 and f 2  = 1. The problem is thus completely solved. We 
obtain 

N,(t; ,  t;; t ; ,  t i )  
= 2 t',S't',P' + 2$'t p'fyfp' + [ ( t ',S')2 + ( t \P' )2]  t ;  + 2( t i" ' )2 t ; tp  

+ 2( t',p')2t; $1 + [ ( tr"')2( t p ) 2  + ( t( ,P')2( t1"')2] t; + 2( tl"' + tp') t$"'t$P't; 

( 13 )  

and 

Summarising, the RG recursive relations are as follows: 

and 

where in the last two equations we have taken into account the x$y invariance of the 
square lattice. This set of four equations completely determines the flow in the 
( t ; ,  t i ,  f;, t i )  space, and through it the phase diagram as well as the universality classes 
of our system. 



1720 C Tsallis and J Souletie 

In order to express the results in more familiar variables, it is convenient to introduce 
the following definitions: 

T =  kgT/J; = 1/K; (20) 

a,= J:/J;= K : / K ;  (21) 

J{+2Ji  Kf+2Kg 
J;+2J,” K;+2K; 

- (Y =-- 2 -  

where we remark that the following relationship holds: a 2 / a l  = p Y / p X .  Our phase 
diagram can also be conveniently expressed in the (7,  a , ,  p”, p’) space. Finally let us 
also introduce a convenient variable (Alcaraz and Tsallis 1982) through the following 
definition: 

s( t , ,  t z )  = In( 1 + 2t, + t,)/ln 4. 

sD( t , ,  t z )  = s(tf, ty, = 1 - s( t , ,  t z ) .  

(25) 

(26) 

Notice an interesting property, namely 

3. Results 

The RG flow exhibits three trivial (fully stable) fixed points, namely ( t ; ,  t ; ,  t : ,  t i )  = 
(0, O,O, 0) (characterising the P phase), ( 1 ,  1 ,  1 ,  1 )  (characterising the F phase) and 
(0, l,O, 1 )  (characterising the I phase). The P-F critical three-dimensional volume (in 
the four-dimensional parameter space) is preserved through duality (and consequently 
through our RG which is constructed on a self-dual cluster), i.e. if ( t ; ,  tg, t:, ti) belongs 
to this volume, then ( t f D ,  t;D, tTD, tzD)  given by 

1 - t ;  
1 +2t;+ t ;  

t X D  = 
1 -  

also belongs to it. However, excepting special cases, the points of this critical volume 
are not self-dual, i.e. in general ( t ; ,  t ; ,  t : ,  r;) # ( t tD, t iD, tfD, t iD).  Due to this fact, 
duality arguments are not sufficient for establishing the analytical expression of the 
P-F critical volume. Two regions of this volume are constituted by self-dual points. 
These regions are the following. 
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(i) The ‘anisotropic’ self-dual surface, determined by 

( 3 1 a )  

(31b)  

[ X  - [YD 

t X  - tYD 

1 -  1 

2 -  2 

which imply sx + s y  = 1 with sx = s( f ; ,  t ; )  and s’ = s ( t : ,  t g )  where we have used 
definition (25) .  This surface contains the anisotropic Potts ferromagnet critical line 
for t ;  = ti and t :  = t i ,  as well as the anisotropic Ising (1) ferromagnet critical line for 
r ;  = (t;)’ and r g  = ( t r ) ’  (both critical lines are exactly recovered within the present RG). 

(ii) The ‘isotropic’ self-dual surface, determined by 

t ; = 1 - 2 t ;  

t ;  = 1 - 2 t ;  

or equivalently by 

sx = SY = ;. ( 3 3 )  

On the intersection between the isotropic and anisotropic self-dual surfaces lies 
the already known P-F critical line of the Z(4) ferromagnet in an isotropic square 
lattice ( t ;  = r y  and t ;  = t ; )  (see for instance Mariz et al 1985). The whole situation is 
depicted in figure 3. A point which belongs to the P-F critical volume but does not 
lie on any of the self-dual surfaces is transformed, through duality (equations (27 ) - (30 ) ) ,  
on another point which also belongs to the P-F critical volume and which is located 
on the ‘other side’ with respect to the anisotropic self-dual surface as well as with 
respect to the isotropic self-dual surface (such an operation transforms (sx, s’) into 
( 1  - sx, 1 - S Y ) ) .  

Figure 3. Cuts of the ‘isotropic’ and ‘anisotropic’ self-dual surfaces with the f $ D  = 0 volume 
in the four-dimensional ( f f ,  ti, f{D, f;D) space (or, equivalently, the ( I T ,  I;, ri, t i )  space). 
The ‘isotropic’ (‘anisotropic’) surface is determined by f ; + 2 f ;  = 1: +?f: = l ( f ;  = r:D and 
t i  = f z D ) ,  and is so-called because it satisfies sx = s y  = i ( s x  + s y  = 1) .  P and I ,  respectively 
indicate the Potts and Ising (1 )  critical points, which lie on the isotropicZ(4) self-dual 
line (to which belongs its P-F critical line). 
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The P-F critical volume bifurcates at a multicritical surface, into two critical 
volumes, namely the I-P and I-F ones. These two volumes are transformed into each 
other through duality (equations (27)-(30)) and, except for the Ising limits and special 
parts of the bifurcation multicritical surface, do not contain regions constituted by 
self-dual points. Their analytical description is therefore far from trivial. 

The analytical expression of the multicritical surface itself is unknown; nevertheless 
it is easy to verify that the anisotropic Potts ferromagnet critical line ( t ;  = ti = t f ”  = ti”) 
belongs to it. 

The RG flow within the critical volumes is as follows. 
(i)  Almost all points of the P-F critical vslume are attracted by the d = 2 isotropic 

Ising ( 1 )  fixed point ( t ;  = t {  = Jt; = Jt: = J2 - l ) ,  and therefore belong to the corre- 
sponding universality class (the present treatment yields for the correlation length 

0 1 

1 

\- 

L= , 
\- 
c 

I -  

0 1 
t;=\rt; 

1 

. 
Figure 4. RG flow in the main invariant subspaces: ( a )  isotropic Z(4) model (f‘, I,, I, and 
I, respectively denote the Potts, k ing  ( l ) ,  Ising (2) and Ising (3) critical points; the broken 
area is unphysical); ( b )  anisotropic four-state Potts model; (c )  anisotropic Ising (1) model. 
P, F and 1 respectively indicate the paramagnetic, ferromagnetic and intermediate (nematic- 
like) phases; 0 and H respectively represent unstable and fully stable fixed points; ( d )  
can indistinctively represent the flow in ( b )  (by respectively choosing s( l;, 1 ; )  and s( t f ,  t f )  
as abcissa and ordinate), as well as that in ( c )  (by respectively choosing s ( t ; ,  ( i f ) , )  and 
s ( t : ,  ( t i ) , )  as abcissa and ordinate); it can also represent the flow associated with the Ising 
(2) model (by respectively choosing 240,  t ; )  and 2s(O, 1:) as abcissa and ordinate; t ;  = t :  = 
O), as well as that of the k ing  ( 3 )  model (by respectively choosing 2 4 0 ,  t ; )  and Zs(0, t : )  
as abcissa and ordinate; f; = 1: = 1). ( b ) ,  (c )  and ( d ) :  the ( 1 , O )  and (0, 1) fixed points are 
the d = 1 points. 
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critical exponent the value vising = In 3/1n(29/ 13) = 1.369, to be compared with the exact 
value v;sxia,cB'= 1; we recall that the present RG linear scale factor b equals 3 (shortest 
distance between roots of the graph; see Melrose (1983a, b)); this result is exact for 
the hierarchical lattice defined by the recursive graph transformation indicated in 
figures l (a )  and ( b )  (and the corresponding one for the y axis), but is incorrect for 
the Bravais square lattice, which is known (Kohmoto et al 1981) to be associated, for 

5 

T 

2 . 5  

5 

2 . 5  

0 5 10 0 
8 "  

5 10 
P "  

5 

T 

2 . 5  

0 

5 

T 

2 . 5  

0 0 . 5  1 
a1 

Figure 5. Typical cuts of the anisotropic Z(4) ferromagnet phase diagram. T =  k , T / J ;  is 
the reduced temperature; a,, p" and py  are defined in the text. The ferromagnetic (F), 
intermediate ( I )  and paramagnetic (P) phases respectively appear at low, intermediate and 
high temperatures. The I phase always disappears for p" and B y  low enough. p: = py  = 1 
and 2 respectively recover the anisotropic king (1) (I,) and four-state Potts (P) critical 
lines. In the limit of high p" and/or B y ,  the I-P and I-F phase boundary asymptotically 
and respectively yield the anisotropic Ising (2) (Iz) and Ising (3) (I,) critical lines. The 
a, = p y / p X  = 1 case corresponds to the isotropic Z(4) ferromagnet. ( a )  a, = 1, ( 6 )  a, = 0.2, 
( c )  p x = B y ,  ( d )  p " = 2 .  
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the isotropic case, with a continuously varying set of universality classes (this dis- 
crepancy could possibly disappear in the limit of increasingly large RG clusters). 

(ii) Almost all points of the I-P and I-F critical v,olumes are respectively attracted 
by the d = 2 isotropic Ising (2) and Ising (3) fixed points (respectively at t ;  = t: = 0 
and r ;  = t: =a- 1,  and at ti = t:  = 1 and t ;  = t: = 4- l),  and therefore belong to the 
d = 2 Ising universality class, as expected from symmetry arguments. 

(iii) Almost all points of the bifurcation multicritical surface flow towards the d = 2 
isotropic four-state Potts fixed point ( t ;  = t i  = t: = t:  = $), and therefore belong to the 
corresponding universality class (we obtain vp,,,, = In 3 /1n (w)  = 1.169, to be compared 
with the exact value (den Nijs 1979), vEtC:=$ for the Bravais square lattice). 

(iv) All points of the P-F, I-P and I-F critical volumes not yet covered by points 
(i)-(iii) either correspond to one or the other d = 1 fixed points [( r ; ,  t ; ,  t:,  t : )  = 
(1 ,  1,0, 0), (0, 0, 1,  l ) ,  (0, l , O ,  0), (O,O, 0, l ) ,  (1 ,1 ,0 ,  l ) ,  (0, 1,  1 ,  l ) ]  and therefore belong 
to the standard N-state Potts one-dimensional universality class (we obtain vID = 

1D - l ) ,  or correspond to new unstable fixed points at the boundary of the physical 
region (real coupling constants), e.g. ( t ; ,  t ; ,  t: ,  t : )  = (f, 0, 0, I),  ( 0 , 1 ,  f, 0). 

The previous statements concerning the RG flow are illustrated in figure 4 for a few 
interesting invariant subspaces. Typical cuts of the full phase diagram are represented 
in figure 5 in the (7, a,, p", p ' )  variables. 

vexact - 

4. Conclusion 

The criticality of the Z(4) ferromagnet in an anisotropic square lattice has been studied 
within a real space renormalisation group ( RG) which preserves two-body correlation 
functions. To construct the RG recursive relations we have adopted a cluster (two-rooted 
graph) which has already proved its efficiency for the N-state Potts ferromagnet in the 
same Bravais lattice, and which presents several interesting features: (i) it is self-dual 
and reproduces consequently all the available exact results concerning the still unknown 
critical frontier associated with the square lattice, itself self-dual; (ii) it presents a 
peculiar x- and y-bond topological structure which, in the high anisotropy limit, exactly 
recovers the linear chain, therefore exhibiting d = 1-d = 2 crossovers which are con- 
sistent with the symmetry-based expectations; (iii) it generates a hierarchical lattice 
whose fractal dimensionality df = 2(df= In(aggregation number)/ln 6 = In 9/ln 3 = 2), 
coincident with that of the Bravais lattice which it is intended to approach. 

In spite of the relative complexity of the cluster (six spins and nine bonds) and of 
the model (four states per spin and four coupling constants) which yield 46 = 4096 
different configurations, it has been possible, through the use of the break-collapse 
method which greatly simplifies the analytical operational task, to establish by hand 
the RG explicit recursive relations with little effort. This set of equations enables the 
quick numerical calculation of an arbitrary point of the phase diagram (three critical 
volumes separating the paramagnetic, intermediate nematic-like and ferromagnetic 
phases in a four-dimensional parameter space) as well as the qualitative discussion of 
the main special features (role played by the duality transformation, etc). All these 
results are either known to be exact (e.g. the critical lines of the anisotropic Ising and 
Potts ferromagnet as well as the para-ferro critical line of the isotropic Z(4) model), 
or believed (by us) to be so (e.g. equations (32)), or high precision ones everywhere 
for the anisotropic square lattice. The model being classical (in the sense that all 
relevant observables commutate) and no proliferation of the coupling constants taking 
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place, the whole phase diagram (as well as the critical exponents, which exhibit 
non-neglectable discrepancies with those corresponding to the Bravais square lattice) 
is exact for the hierarchical lattice generated by the recursive graph transformation. 
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